Gene Expression Analysis of the 26S Proteasome Subunit PSMB4 Reveals Significant Upregulation, Different Expression and Association with Proliferation in Human Pulmonary Neuroendocrine Tumours
نویسندگان
چکیده
BACKGROUND Proteasomal subunit PSMB4 was suggested to be a survival gene in an animal model of hepatocellular carcinoma and in glioblastoma cell lines. In pulmonary adenocarcinoma, a high expression of these genes was found to be associated with poor differentiation and survival. This study investigates the gene expression levels of 26S proteasome subunits in human pulmonary neuroendocrine tumours including typical (TC) and atypical (AC) carcinoid tumours as well as small cell (SCLC) and large cell (LCNEC) neuroendocrine carcinomas. MATERIAL AND METHODS Gene expression levels of proteasomal subunits (PSMA1, PSMA5, PSMB4, PSMB5 and PSMD1) were investigated in 80 neuroendocrine pulmonary tumours (each 20 TC, AC, LCNLC and SCLC) and compared to controls. mRNA levels were determined by using TaqMan assays. Immunohistochemistry on tissue microarrays (TMA) was performed to determine the expression of ki67, cleaved caspase 3 and PSMB4. RESULTS All proteasomal subunit gene expressions were significantly upregulated in TC, AC, SCLC and LCNEC compared to controls. PSMB4 mRNA is differently expressed between all neuroendocrine tumour subtypes demonstrating the highest expression and greatest range in LCNEC (p=0.043), and is significantly associated with proliferative activity (p=0.039). CONCLUSION In line with other 26S proteasomal subunits PSMB4 is significantly increased, but differently expressed between pulmonary neuroendocrine tumours and is associated with the proliferative activity. Unlike in pulmonary adenocarcinomas, no association with biological behaviour was observed, suggesting that increased proteasomal subunit gene expression is a common and probably early event in the tumorigenesis of pulmonary neuroendocrine tumours regardless of their differentiation.
منابع مشابه
The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملNitric oxide regulates the 26S proteasome in vascular smooth muscle cells.
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and casp...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملA Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer
Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...
متن کامل